AI Policy, AI Sentiment, AI strategy, AI Survey, Algorithms, Artificial Intelligence, Machine Learning, Mathematical Corporation

Do we Humans trust AIs?

AI … IT IS HERE, IT IS THERE, IT IS EVERWHERE.

I was late to a dinner appointment, arranged by x.ai, at Caviar and Bull (booked by my human friend David). Siri had already indicated that I would be late (yes it had also warned me repeatedly it was time to leave the office for me to be on time) and Waze (i.e., the worlds largest community-based traffic & navigation app) was trying to guide me through a busy Budapest city center. Stuck in traffic … sighhh … but then the traffic moves … I press on the speeder … and … my car breaks (with a vengeance) at the same moment my brain realizes that the car in front of me had not moved and I was about to hit it. My car had just saved me from a crash. And from being even later for my appointment of what would turn out to be an absolutely excellent dinner with great Hungarian reds and white wines recommended by Vivino (i.e., based on my wine history & preferences, my friends preferences and of course the menu). In the mean time, my scheduler had notified my friend that I would be a bit late due to traffic (rather than the real reason of me being late leaving the office;-).

Most of the above powered by AI (also indicated by the color red) or more accurately machine learning applications. Thus based on underlying machine learning algorithms and mathematical procedures applied to available personalized, social network and other data.

In the cases above I am implicitly trusting whatever automation have “sneaked” into my daily life will make it move convenient and possible even saving others as well as myself from harm (when my own brain & physiology gets too distracted). Do I really appreciate that most of this convenience is based on algorithms monitoring my life (a narrow subset that is of my life) and continuously predicts what my next move might be in order to support me. No … increasingly I take the offered algorithmic convenience for granted (and the consequences of that is another interesting discussion for another time).

In everyday life we frequently rely on AI-driven and augmented decisions … mathematical algorithms trained on our and others digital footprint and behaviors … to make our lives much more convenient and possibly much safer.

The interesting question is whether people in general are consciously aware of the degree of machine intelligence or algorithmic decision making going on all around them? Is it implicit trust or simply ignorance at play?

Do we trust AI? Is AI trustful? Trustworthy? Do we trust AI more than our colleagues & peers? and so forth … and what does trust really mean in the context of AI and algorithmic convenience?

Some of these questions relating to corporate decision making have in detail been described in the context of the corporate decision makers sentiment towards AI in my previous blog “On the acceptance of artificial intelligence in corporate decision making – a survey”.

human trust

TRUST – HUMAN VS AI.

Imagine that you have a critical decision to make at your work. Your team (i.e., your corporate tribe) of colleague experts recommends, based on their human experience, to choose Option C as the best path forward.

Would you trust your colleagues judgement and recommendation?

Yes! There is a pretty high likelihood that you actually would.

More than 50% of corporate decision makers would frequently to always trust the recommendation (or decision) based on human expert judgement. More than 36% of corporate decision makers would trust such a recommendation in about half the time (i.e., what I call the flip a coin decision making).

Now imagine you are having a corporate AI available to support your decision making. It also provide the recommendation for Option C. Needles maybe to say, but nevertheless let’s just say it; the AI has of course been trained on all available & relevant data and through roughly tested for accuracy (i.e., in a lot more rigorous way than we test our colleagues, experts and superiors)

Beside Humans (Us) versus AI (Them), the recommendation and decision to be made is the of course same.

Would you trust the AI’s recommendation? Would you trust it as much as you do your team of colleagues and maybe even your superior?

Less than 13% of corporate decision makers would frequently to always trust a recommendation (or decision) based on AI judgement. Ca. 25% of the decision makers would trust an AI based decision in about half the times.

Around 20% of decision makers would never trust a AI-based decision. Less than 45% would do so only infrequently.

human vs ai - trust in decisions
Based on a total of 426 surveyed respondents of which 214 was offered Question A and 212 was offered was offered Question B. Respondents are significantly more trusting towards decisions or recommendations made a fellow human expert or superior than if a decision or recommendation would be made by an AI. No qualifications provided towards success or failure rate.

It is quiet clear that we regard a decision or recommendation is based on AI, rather than a fellow human, with substantially less trust.

Humans don’t trust decisions made by AIs. At least when it is pointed out that a decision is AI-based. Surprisingly, given much evidence to the contrary, humans trust humans, at least the ones in our own tribe (e.g., colleagues, fellow experts, superiors, etc..).

Dietvorst and coworkers refer to this human aversion towards non-human or algorithmic-based recommendations or forecasts as algorithmic aversion. It refers to situations where human decision makers or forecasters deliberately avoid statistical algorithm in their decision or forecasting process.

A more “modern” word for this might be AI aversion rather than algorithm aversion. However, it describes very much the same phenomena.

trust and mistrust

Okay, okay … But the above question of trust did not qualify the decision making track record of the human versus the AI. Thus respondents could have very different ideas or expectations about the success or error rates of humans and AIs respectively.

What if the fellow human expert (or superior) as well as the AI is known to have a success rate that is better than 70%. Thus more than 7 out of 10 decisions are in retrospect deemed successful (ignoring whatever that might really mean). By the same token, it also means that the error rate is 30% or less … or that 3 (or less) out of 10 decisions are deemed unsuccessful.

human vs ai - trust in decisions w 70% success rate
Based on a total of 426 surveyed respondents of which 206 was offered Question A and 220 was offered Question B. For both Human Expert (or Superior) and AI, a decision making success rate of 70% (i.e., 7 out of 10) should be assumed. Despite the identical success rate, respondents remain significantly more trusting towards decisions made by a fellow human expert (or superior) than if a decision would be made by an AI.

In a like-for like-decision making success rate, human experts or superiors are hugely preferred over a decision making AI.

A bit more than 50% of the corporate decision makers would frequently or always trust a fellow human expert recommendation or decision. Less than 20% would frequently or always trust a decision made by an AI with the same success rate as the human expert.

Thus, Humans trusts Humans and not so much AIs. Even if the specified decision making success rate is identical. It should be noted that trust in a human decision or recommendation relates to fellow human experts or superiors … thus trust towards colleagues or individuals that are part of the same corporate structure.

The result of trust in the human expert or superior with a 70% success rate is quiet similar to the previous result without a specified success rate

human vs ai - trust in human decisions
Based on a total of 426 surveyed respondents of which 214 was offered Question A without success rate qualification and 223 was offered was offered a Question A with a 70% success rate stipulated. As observed in this chart, and confirmed by the statistical analysis, there is no significant difference in the trust in a decision made by human expert (or superior) whether a success rate of 70% have been stipulated or no qualification had been given.

This might indicate that our human default expectations towards a human expert or superior’s recommendation or decision is around the 70% success rate.

However, for the AI-based recommendation or decision, respondents do provide a statistically different trust picture depending on whether a success rate of 70% or not have been specified. The mean sentiment increases with almost 15% by specifying that the AI has a 70% success rate. This is also very visible from the respondent data shown in the below chart;

human vs ai - trust in ai decisions
Based on a total of 426 surveyed respondents of which 212 was offered Question B without success rate qualification and 203 was offered a Question B with a 70% success rate assumed. As observed in this chart, and confirmed by the statistical analysis, there is a substantial increase in the trust of the AI-based decision where the success rate of 70% had been stipulated compared to the question where no success rate was provided.

Respondents that would never or infrequently trust a AI-based decision is almost 20% lower when the considering a 70% success rate.

This might indicate that the human default perception of the quality of AI-based decisions or recommendations are far below the 70% success rate.

So do we as humans have higher expectations towards decisions, recommendations or forecasts based on AI than the human expert equivalent?

human vs ai - expectations towards decision quality
Based on a total of 426 surveyed respondents of which 206 was offered Question A and 220 was offered Question B. No statistical difference in the expectations towards the quality of decisions where found between human expert (or superior) and that of AI-based ones.

This survey indicates that there is no apparent statistically significant difference in what quality we expect from a human expert compared to that of an AI. The average expectation towards the quality is that less than 2 out of 10 decisions could turn out wrong (or be unsuccessful). Thus, a failure rate of 20% or less. Similar to a success rate of 80% or better.

It is well known that depending on whether a question is posed or framed in a positive way or negative can greatly affect how people will decide. Even if the positive and negative formulations are mathematically identical.

An example; you are with the doctor and he recommend an operation for your very poor hearing. Your doctor has two options when he informs you of the operations odds of success (of course he might also choose not to provide that information all together if not asked;-); Frame A. there is a 90% chance of success and you will be hearing normally again on the operated ear, Frame B. there is a 10% chance of failure and you will become completely deaf on the operated ear. Note that the success rate of 90% also imply an error rate of 10%. One may argue that the two are mathematically identical. In general many more would choose to have an operation when presented with Frame A, i.e., 90% success rate, than if confronted with Frame B, i.e., the 10% failure rate. Tversky & Kahneman identified this as framing effect, where people react differently to a given choice depending on how such a choice is presented (i.e., success vs failure). As Kahneman & Tversky’s showed, loss is felt to be more significant than the equivalent gain.

When it comes to an AI-driven decision would you trust it differently depending on whether I present you the AI’s success rate or it error rate? (i.e., the obvious answer is of course yes … but to what degree?)

ai trust - success vs failure rate
Based on a total of 426 surveyed respondents of which 233 was offered Question A (i.e., framed as decision success rate) and 193 Question B (i.e., framed as decision error rate). As expected from framing bias and prospect theory more respondents would trust the AI when presented with the AI’s success rate (i.e., better than 95%) compared to its error rate (i.e., less than 5 out of 100)

When soliciting support for AI-augmentation a positive frame of its performance is (unsurprisingly) much better than the mathematically equivalent negative frame, i.e., success rate versus failure or error rate.

Human cognitive processes and biases treats losses or failures very different from success or gains. Even if the two frames are identical in terms of real world impact. More on this later when we get into some cool studies on our human brain chemistry, human behavior and Tversky & Kahneman’s wonderful prospect theory (from before we realized that oxytocin and other neuropeptides would be really cool).

HUMANS TRUST HUMANS.

Trust is the assured reliance on the character, ability, or truth of someone or something. Trust is something one gives as opposed to trustworthiness which is someone or something other being worthy of an individuals or groups trust.

The degree of which people trust each other is highly culturally determined with various degrees of penalties associated with breaking trust. Trust is also neurobiological determined and of course context dependent.

As mentioned by Paul J. Zak in his Harvard Business Review article “The Neuroscience of Trust” ; “Compared to people in low-trust companies, people in high-trust companies report: 74% less stress, 107% more energy at work, 50% higher productivity, 13% fewer sick days, 76% more engagement, 29% more satisfaction with their lives, 40% less burnout” … Trust is clearly important for corporate growth and the individuals wellbeing in a corporate setting (and I suspect anywhere really). Much of this described mathematically (and I would argue beautifully) in Paul Zak’s seminal paper “Trust & Growth” relating differences in the degree of trust as it relates to different social, legal and economic environments.

People trust people. It is also quiet clear from numerous studies that people don’t trust that much non-people (e.g., things or non-biological agents such as mathematical algorithms or AI-based) ,.. okay okay you might say … but why?

While 42 is in general a good answer … here the answer is slightly simpler … Oxytocin (not to be confused with an oxymoron). Okay okay … what is those Oxytocin and what do they have to do with trusting or not trusting AI (that is the answer). Well … if you have read Robert Sapolsky’s brilliant account for our behavior at our best and worst (i.e., “Behave: the biology of humans at our worst and best” by Robert Sapolsky) you might know enough (and even more about those nasty glucocorticoids. And if you hadn’t had enough of those please do read “Why Zebras don’t get ulcers” also by Sapolsky, you might even be able to spell it in the end).

Oxytocin is our friend when it comes to warm and cozy feelings towards each other (apart from fairly being essential for inducing labor and lactation). Particular when “each other” is part of our Team, our Partner, our kids and even our Dog. It is a hormone of the peptide type (i.e., it is relative small and consist of amino acids) and is used by neurons to communicate with each other. They pretty much influence how signals are processed by our brain and how our body reacts to external stimuli.

The higher the level of oxytocin, the more you are primed to trust your team, your stock broker, your partner (and your dog), feeling closer to your wife and your newly born babies. The more you hug, you kiss and shake hands, have sex and walk your dog, the more of Oxytocin will be rushing through your body and the more trusting you will become towards your social circles. “Usness” is great for oxytocin release (as well as a couple of other neuropeptides with a crack for making us feel better with one and another … within the confines of “Usness” … oh yeah and we have some serious gender biases there as well). Particular when “Them” are around. Social interactions are important for the oxytocin kick.

The extra bonus effect of increased oxytocin is that it appears to dampen the brain’s “freaking out” center’s (i.e., amygdala) reactivity to possible threats (real or otherwise). At least within the context of “Usness” and non-existential threats.

HUMANS DON’T TRUST AI (as much as Humans).

Oxytocin (i.e., changes in level) appears mainly to be stimulated or triggered by interaction with other humans (& dogs). When the human (or dog) interaction is taken out of the interaction “game”, for example replaced by an electronic or mechanical interface (e.g., computer interface, bot interaction, machine, etc..) , trust is not enhanced by oxytocin levels. This has been well summarized by Mauricio Delgado in his “To trust or not to trust: ask oxytocin” Scientific American, as well as in the ground breaking work of Paul J. Zak and co-workers (see “Oxytocin increases trust in Humans” from Nature, 2005) and likewise impressive work of Thomas Baumgartner et al. (“Oxytocin shapes the neural circuitry of trust and trust adaptations in humans” from Neuron, 2008).

Thomas Baumgartner and coworkers (similar setup to other works in this field) administrated either placebo or oxytocin intranasal spray to test subjects prior to the experimental games. Two type of games where played; (a) so-called trust game with human partner interactions (i.e., human-human game) where the test subject invest an amount of money to a 3rd party (e.g., stock broker) that will invest the money and return the reward and (b) a so-called risk game of which the outcome would be machine determined by a random generator (i.e., human-machine game). The games are played over 12 rounds with result feedback to the test subject, allowing for a change in trust in the subsequent round (i.e., the player can reduce the invested money (less trust), increase (higher trust) or keep it constant (keep trust level)). Baumgartner et al found that test subjects playing the trust game (human-human game), and who received the oxytocin “sniff”, remained trusting in throughout rounds of the game, even when they had no rational (economical) reason to remain trusting. The oxytocin subjects trust behavior was found to be substantially higher compared to test subjects playing the same game having received the placebo. In the risk game (human-machine) no substantial difference were observed between oxytocin and placebo subjects which in both cases kept their trust level almost constant. While the experiments conducted are fascinating and possible elucidating towards the effects of oxytocin and social interactions, I cannot help being somewhat uncertain whether the framing of Trust vs Risk and the subtle game structure differences (i.e., trusting human experts that supposedly know what he is doing vs lottery a game of chance) could skew the results. Thus, rather than telling us whether humans trust humans more than machines or algorithms (particular the random generator kind of which trust is somewhat of an oxymoron), it tells us more how elevated levels of oxytocin make a human less sensitive to mistrust or angst for a fellow human being (that might take advantage of that trust).

It would have been a much more interesting game (imo) of both had been called a Trust Game (or Risk Game for that matter as this is obviously what it is). One game with a third party investing the test subjects transfer. Thus similar to Baumgartner’s Trust Game setup. And another game where the third party is an algorithmic “stock broker” with at least the same success rate as the first games 3rd party human. This would have avoided the framing bias (trust vs risk) and the structural differences in the game.

Unfortunately, we are not that much closer to a great explanation for why humans appear to trust humans more than algorithms. Still pretty much guessing.

And no I did not hand out cute oxytocin (and of course placebo) nasal spays to the surveyed respondents. Neither did I check for whether respondents had been doing a lot of hugging or other close-quarter social network activities which would have boosted the oxytocin levels. This will be for a follow up study.

intranasal oxytocin sprays
In Baumgartner’s experiment subjects got 3 puffs of Oxytocin or Placebo per nostril each of 4 IUs (i.e., 24 IUs or ml). Note: the bottle above is just a random sample of a nostril oxytocin spay.

A guess towards a possible explanation for humans being statistically significantly less trusting towards algorithms (algorithmic aversion), AI (AI aversion) and autonomous electronic-mechanistic interfaces in general, might be that our brains have not been primed to regard such as part of “Usness”. In other words there is a very big difference between trusting colleagues or peers (even if some are superiors) whom are part of your corporate “tribe” (e.g., team, unit, group, etc…) compared to an alien entity such as an AI or an algorithm could easily be construed.

So the reasons why humans trust humans and less so algorithms and AI is still somewhat reclusive although the signals are possibly there.

Based on many everyday machine learning or algorithmic applications leapfrogging our level of convenience already today … Maybe part of the “secret” is to make AI-based services and augmentation part of the everyday.

The human lack of trust in AI, or the prevalence of algorithms aversion in general as described in several articles by Berkeley Dietvorst, in a corporate sense and setting is nevertheless a very big challenge for any ideas of a mathematical corporation where mathematical algorithms are permeating all data-driven decision processes.

GOOD & RELATED READS.

ACKNOWLEDGEMENT.

I greatly acknowledge my wife Eva Varadi for her support, patience and understanding during the creative process of creating this Blog. Without her support, I really would not be able to do this or it would take long past my expiration date to finish.

SURVEYS.

Unless otherwise specified the results presented here comes from a recent surveymonkey.com survey that was conducted between November 11th, 2017 and November 21st 2017. The Survey took on average 2 minutes and 35 seconds to complete.

The data contains 2 main survey collector groups;

  1. Survey Monkey paid collector group run between November 11th and 14th 2017 with 352 completed responses from USA. Approximately 45% Female and 55 Male in the surveyed sample with an age distribution between 18 and 75 years of age. The average age is 48.8. The specified minimum income level was set to $75 thousand or about 27% higher than the median US real household income level in 2016. The average household income level in this survey is approx. 125 thousand annually. Ca. 90% or 316 out of the 352 respondents have heard of Artificial Intelligence (AI) previously. For AI relevant questions only the 316 was used. Surveyed respondent that had not previously heard of AI (36 out of 252) was not considered. More than 70% of the respondents had a 4-year college or graduate-level degree. About 70% of the respondents where married and 28% had children under the age of 18. Moreover, ca. 14% currently had no employment.
  2. Social Media (e.g., Facebook, LinkedIn, Twitter, …) collector group run between November 11th and 21st 2017 and completed in total 115 responses primarily from the telecom & media industry mainly from Europe. Gender distribution comprised around 38% Female and 62% Male. The average age for this sample is 41.2. No income data is available for this group. About 96% (110) have heard of Artificial Intelligence. For AI related questions, only respondent that have confirmed they have heard about AI have been considered. Ca. 77% of the respondents have a 4-year college or graduate-level degree. 55% of the surveyed sample are married and a bit more than 50% of this surveyed group have children under 18. Less than 2% of the respondents were currently not employed.

It should be emphasized that the SurveyMonkey was a paid survey with 2.35 Euro per response, totaling 1,045 Euro for 350 responses. Each respondent completed 18 questions. Age balancing chosen to be basic and the gender balancing census.

 

AI Policy, AI Sentiment, AI strategy, AI Survey, Artificial Intelligence

Expectations towards & Acceptance of Artificial Intelligence in Corporate Decision Makings.

A Survey Primer.

I am currently conducting some research into corporate decision making, as referenced to the individual corporate decision maker, and the extent and perceived quality of data-driven decisions in the corporate decision making process.

In this (initial) research, it is of particular interest to understand the extend of corporate data-driven decision making. The initial part of the survey focuses on (1) type of corporate decisions made, (2) the availability of data used in the decision making, (3) the structure of such data, (4) the quality of such available data and so forth.

The second part of the Survey attempts to gauge human expectations towards and acceptance of artificial intelligence (A.I.) in corporate decision making as it relates to the individual decision maker and the overall corporate decision making process.

The (bold blue text) link below takes you to the Survey with 24 questions which should take less than 4 minutes (current average is 3 minutes 31 seconds);

“Perceived quality and acceptance of Human & Artificial Intelligence Augmentation in Corporate Decision Making.”

SELRES_774c01bf-c5c4-4ebc-a7f3-fc6234834b82SELRES_7e79026e-dc05-4473-a56c-017ee2665ff8The survey results will be published in an essay I am currently writing on “Corporate Decision Making – SELRES_7e79026e-dc05-4473-a56c-017ee2665ff8SELRES_774c01bf-c5c4-4ebc-a7f3-fc6234834b82The neuroscience of human decisions and the role that Artificial Intelligence may play” (working title!;-). Some of the thoughts and analysis will also appear here on this Blog … so stay tuned.

The impact of A.I. is widely discussed and reasonably understood in the context of consumerism, product development and the harder science (i.e., at least the “hows”, maybe not always the “whys”).

Little research work has been done on how Artificial Intelligence may shape businesses and their corporate decision making processes. Certainly, very little is known about the sentiment of management and executives towards A.I. in context of decision making and the possibility of augmenting such with A.I.-based insights. The impact of A.I. augmentation on the individual corporate decision maker, as well as for the business in its totality, is likely to be transformative.

So far I have collected survey data from 550+ executives and managers.

If you have taken the survey then very much appreciated and thanks (please don’t take it again;-). If you have not yet, please click the above link … it should not take more than maximum 4 minutes of your life.

I expect to publish the first results of this Survey by early October.

Thanks!